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Abstract—A compact two-dimensional (2-D) full-wave finite-dif- FDTD to the analysis of the dispersion characteristic of a uni-
ference frequency-domain method is proposed for the analysis |ateral fin-line in [6].
of dispersion characteristics of a general guided wave structure. Although the above-mentioned 2-D FDTD approaches have

Because the longitudinal field components are eliminated in . -
the proposed method, only four transverse field components the advantages of CPU time and memory saving over those 3-D

are involved in the final resulting eigen equation. This feature Methods, they all need to give the propagation congias an
considerably reduces the required CPU time as compared to the input parameter and have to find the eigenfrequencies of interest

existing approaches by which six field components are comprised. via discrete Fourier transform. To cope with the predicament,
Additionally, unlike other 2-D finite-difference schemes that a novel 2-D finite-difference frequency-domain (FDFD) algo-

determine the eigenfrequency for a given propagation constant, . - ; .
the new method finds the propagation constani3 for a given kg rithm was proposed recently [7], in which the propagation con-

(frequency). The new method has been verified by examining the Stant is sought for a given frequency. However, all the six field
computed results of a number of typical guided wave structures components need to be employed to yield an eigen equation.

with the published results. Very good agreement is achieved. In this paper, a compact 2-D full-wave FDFD method is pro-
Index Terms—Anisotropic media, eigenvalues and eigenfunc- POsed for solving for propagation constghof a general trans-
tions, finite-difference methods, frequency-domain analysis, mission line for a giverk, (frequency). To convert a physical
waveguide. guided wave problem into an eigen problem, only four trans-
verse field components are involved. The resultant eigen equa-
tion is constructed by a highly sparse matrix. In contrast to
o _ ) o the existing approaches that use six field components, the new
T HE determination of the dispersion characteristics of @ethod is much more efficient in computation. Needless to say

1 general guided wave structure is a very important sufat the feature of finding for a givenk, is more pertinent in
jectin practical engineering designs. Numerous full-wave techractical applications.

niques tackling the problems have been proposed by many re-
searchers [1]-[8]. For example, the approach used to determine
the characteristics in [1] is based on a three-dimensional (3-D)
finite-difference time-domain (FDTD) simulation. Because the Itis assumed that the guided wave structure is uniform along
method involves a 3-D mesh, large memory space and long CRXJs = and the wave propagates in the positivdirection. The
time are required. To alleviate these problems, X§tal.intro- fields in a general guided wave structure can be expressed as
duced a two-dimensional (2-D) FDTD approach that uses only

a 2-D mesh consisting of all six field components [2]. In theE(% y, 2) = [Ex(z, 9)& + Ey(z, v)i + E.(z, y)3]e 77
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Il. THEORY

approach, the propagation constant is given as an input param- )

eter for solving for eigenfrequencies. A further step was taken. .

to reduce the grid to a truly 2-D grid by approaching the mesH (z: ¥, 2) = [Hu(, 9)& + Hy(x, )i + H(x, y)2le™%*

size in the propagation direction to zero [4]. To avoid dealing (2)

with complex variables and to improve the efficiency, a variable

transformation was introduced that leads to a real-variable algehere the time variation of’“* is suppressed. Therefore, the

rithm [5]. Hong and Park applied the real-variable 2-D compaderivatives with respect te can be replaced b§/9z = —j73.

Although the approach proposed is applicable to a general
anisotropic type of transmission line, for the simplicity of illus-
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Conventional Yee's 3-D lattice.

where the prime sign is omitted for the sake of simplicity.

With Yee’s grid system shown in Fig. 1, (3) can be discretized )

as
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As h. approaches zero, the Yee’s grid is reduced to a compact * k2e..h2 y(E= 1)+ k2e..h2 (@ 9)
2-D grid as shown in Fig. 2. Consequently, (4) and (5) become 1 ) )
g g q y, (4) (5) n Hy(i+1, j)

the following 2-D form:
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Eliminating E. and H.. from (6) and (7), we obtain
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Fig. 2. Compact 2-D lattice.
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— Hy (z7 j) Fig. 3. Typical guided wave structures. (a) Rectangular waveguide. (b) Boxed
ko microstrip line with anisotropic substrate. (c) Unilateral fin-line. (d) Partially
1 o 2 o filled inhomogeneous dielectric loaded waveguide.
= 2h2 E (i, j-1)+ <5m; - W) E.(i, j)
0"y 0"y . . . .
1 o 1 field components, (13) can be rewritten as a generalized eigen-
+ W E.(i,j+1) - Zhahy value problem
(B (4, i) —Ey(i+1, j—1) = Ey(i, j)+Ey(i+1, j)]. [A] - {z} = \[B] - {z} (14)
(11)

where[B] is a unit matrix. Since the eigenvali®f interest will
Because the longitudinal components have been eliminated ' €9ual zero, the zero boundary condition of itieelement
the final equations, the boundary conditi&h = 0 on the sur- of vector{z} can be implemented by multiplying a very large

face of conductors has to be reflected indirectly. It can be doREMber, for example, fQ to the matrix elementa;; andb;;
by inserting the boundary condition into (6) and (7) and sy§uch that theth equation is dominated by 1Qa;; — Abi; )z; =

tematically modifying (8)—(11) accordingly. For example, foP ©f #: = 0.
E.(i+1, j) = 0in (6), (8) will take the form of
lll. NUMERICAL RESULTS
J5] L To verify the proposed method, several typical guided wave
ko E(i, 5) structures are analyzed. As the first example, an empty rectan-
1 o o gular waveguide with widtle = 19.05 mm and height =
T T R2e..hoh, [Ha (i, = 1) = Ha (4, )] 9.525 mm, as shown in Fig. 3(a), is analyzed for not only the
1 1 fundamental mode but also the first four higher order modes.
+ e Hy(i—1,7)+ <1 - W) Hy(i, 7). The calculated numerical results are compared with the exact

solution. As shown in Fig. 4(a), good agreement is obtained. To
validate the method for the cutoff modes, the first three modes
. - . - in the rectangular waveguide are also calculated when they are
As in FDTD, the continuity condition of electric fields acros§ 1o cutoff and the results are presented in Fig. 4(b) along with

two dielectric mediums is ensured by setting the dielectric COfie exact solutions

stant on the interface as the average of the dielectric constant§he second case is a boxed microstrip line with electric

in the tvyo regions.. . anisotropic substrate, as shown in Fig. 3(b). The width and the
be’iféirémgle%main;;]%%g:i)?:gjlg?na;ﬁcond't'ons’ (®8)-(11) CaHeight of the metallic box are = 6.5 mm andb = 3.5 mm,
respectively. The dielectric diagonal constant tensor of the
substrate is given by,, = e.. = 9.4, ande,, = 11.6, and its
[4] - {«} = Mz} (13) thickness: = 1.5 mm. The width of the stripv = 1.5 mm and
the thickness is negligible. The computed result is superposed
where[4] is the right-hand sparse matrix coefficient listed invith that calculated by FDTD in [4] in Fig. 5 with good
(8)-(11),A = B/ko, and{z} = {E,, E,, H,, H,}*. The correlation.
conductor boundary conditions for transverse electric field com-The third example is an unilateral fin-line with the geometry
ponents can be applied straightforwardly. For the conveniergtl@own in Fig. 3(c), in whichh = 20 mm, b = 10 mm,d =
of applying the boundary conditions for the transverse electrianm, ands = 4 mm. The relative permittivity of the dielectric

(12)
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Fig. 7. Dispersion characteristics of a partially filled inhomogeneous dielectric
loaded waveguide.
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2 4 6 8 10 12 14 16 18 are compared with that of Ansoft-HFSS. As shown in Fig. 7,

excellent agreement can be observed.

It is worthwhile mentioning that the example of inhomoge-
neous dielectric loaded waveguide in [8] is also calculated with
Pthis method. For the sake of briefness, the result is not presented
here. Excellent agreement has been obtained between the result

of this method and that of biorthonormal-basis method, which
falls in a totally different category of numerical method.
slab ise, = 2.22. The result calculated by the proposed method Although the elimination of longitudinal components does
and that obtained in [3] are superimposed in Fig. 6. not help to reduce the memory requirement due to the number of
Finally, a partially inhomogeneous dielectric loaded waveerms in remaining equations increases, the CPU time is consid-
guide as shown in Fig. 3(d) is analyzed. The dimensions of teeably reduced as compared to the case in which six field com-
structure arer = 10.16 mm, b = 5.588 mm, ¢ = 3.048 mm, ponents are comprised. The comparison of efficiency in calcu-
andd = 5.08 mm. The relative permittivity of the slabds = 8. lating dispersion curves of dominant mode in rectangular wave-
The dispersion curves of the first two modes are obtained agdide [Fig. 3(a)] and boxed microstrip line [Fig. 3(b)] is shown

Frequency (GHz)

Fig. 5. Dispersion characteristics of a boxed microstrip line with anisotro
substrate.
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final resulting eigen equation. Therefore, it is more efficient
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