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Abstract—A compact two-dimensional (2-D) full-wave finite-dif-
ference frequency-domain method is proposed for the analysis
of dispersion characteristics of a general guided wave structure.
Because the longitudinal field components are eliminated in
the proposed method, only four transverse field components
are involved in the final resulting eigen equation. This feature
considerably reduces the required CPU time as compared to the
existing approaches by which six field components are comprised.
Additionally, unlike other 2-D finite-difference schemes that
determine the eigenfrequency for a given propagation constant,
the new method finds the propagation constant for a given 0

(frequency). The new method has been verified by examining the
computed results of a number of typical guided wave structures
with the published results. Very good agreement is achieved.

Index Terms—Anisotropic media, eigenvalues and eigenfunc-
tions, finite-difference methods, frequency-domain analysis,
waveguide.

I. INTRODUCTION

T HE determination of the dispersion characteristics of a
general guided wave structure is a very important sub-

ject in practical engineering designs. Numerous full-wave tech-
niques tackling the problems have been proposed by many re-
searchers [1]–[8]. For example, the approach used to determine
the characteristics in [1] is based on a three-dimensional (3-D)
finite-difference time-domain (FDTD) simulation. Because the
method involves a 3-D mesh, large memory space and long CPU
time are required. To alleviate these problems, Xiaoet al. intro-
duced a two-dimensional (2-D) FDTD approach that uses only
a 2-D mesh consisting of all six field components [2]. In the
approach, the propagation constant is given as an input param-
eter for solving for eigenfrequencies. A further step was taken
to reduce the grid to a truly 2-D grid by approaching the mesh
size in the propagation direction to zero [4]. To avoid dealing
with complex variables and to improve the efficiency, a variable
transformation was introduced that leads to a real-variable algo-
rithm [5]. Hong and Park applied the real-variable 2-D compact
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FDTD to the analysis of the dispersion characteristic of a uni-
lateral fin-line in [6].

Although the above-mentioned 2-D FDTD approaches have
the advantages of CPU time and memory saving over those 3-D
methods, they all need to give the propagation constantas an
input parameter and have to find the eigenfrequencies of interest
via discrete Fourier transform. To cope with the predicament,
a novel 2-D finite-difference frequency-domain (FDFD) algo-
rithm was proposed recently [7], in which the propagation con-
stant is sought for a given frequency. However, all the six field
components need to be employed to yield an eigen equation.

In this paper, a compact 2-D full-wave FDFD method is pro-
posed for solving for propagation constantof a general trans-
mission line for a given (frequency). To convert a physical
guided wave problem into an eigen problem, only four trans-
verse field components are involved. The resultant eigen equa-
tion is constructed by a highly sparse matrix. In contrast to
the existing approaches that use six field components, the new
method is much more efficient in computation. Needless to say
that the feature of finding for a given is more pertinent in
practical applications.

II. THEORY

It is assumed that the guided wave structure is uniform along
axis and the wave propagates in the positivedirection. The
fields in a general guided wave structure can be expressed as

(1)

(2)

where the time variation of is suppressed. Therefore, the
derivatives with respect tocan be replaced by .

Although the approach proposed is applicable to a general
anisotropic type of transmission line, for the simplicity of illus-
tration, the derivation below will be limited to the case of elec-
tric anisotropic media with diagonal dielectric constant tensor

. By normalizing field components with square root of the
free-space wave impedance such that and

, Maxwell’s curl equations become

(3)
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Fig. 1. Conventional Yee’s 3-D lattice.

where the prime sign is omitted for the sake of simplicity.
With Yee’s grid system shown in Fig. 1, (3) can be discretized

as

(4)

and

(5)

where and are mesh sizes in , and directions,
respectively, and .

As approaches zero, the Yee’s grid is reduced to a compact
2-D grid as shown in Fig. 2. Consequently, (4) and (5) become
the following 2-D form:

Fig. 2. Compact 2-D lattice.

(6)

and

(7)

Eliminating and from (6) and (7), we obtain

(8)
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(9)

(10)

(11)

Because the longitudinal components have been eliminated in
the final equations, the boundary condition on the sur-
face of conductors has to be reflected indirectly. It can be done
by inserting the boundary condition into (6) and (7) and sys-
tematically modifying (8)–(11) accordingly. For example, for

in (6), (8) will take the form of

(12)

As in FDTD, the continuity condition of electric fields across
two dielectric mediums is ensured by setting the dielectric con-
stant on the interface as the average of the dielectric constants
in the two regions.

After implementing all the boundary conditions, (8)–(11) can
be concluded as an eigen problem as

(13)

where is the right-hand sparse matrix coefficient listed in
(8)–(11), , and . The
conductor boundary conditions for transverse electric field com-
ponents can be applied straightforwardly. For the convenience
of applying the boundary conditions for the transverse electric

Fig. 3. Typical guided wave structures. (a) Rectangular waveguide. (b) Boxed
microstrip line with anisotropic substrate. (c) Unilateral fin-line. (d) Partially
filled inhomogeneous dielectric loaded waveguide.

field components, (13) can be rewritten as a generalized eigen-
value problem

(14)

where is a unit matrix. Since the eigenvalueof interest will
not equal zero, the zero boundary condition of theth element
of vector can be implemented by multiplying a very large
number, for example, 10 to the matrix elements and
such that theth equation is dominated by 10

or .

III. N UMERICAL RESULTS

To verify the proposed method, several typical guided wave
structures are analyzed. As the first example, an empty rectan-
gular waveguide with width mm and height

mm, as shown in Fig. 3(a), is analyzed for not only the
fundamental mode but also the first four higher order modes.
The calculated numerical results are compared with the exact
solution. As shown in Fig. 4(a), good agreement is obtained. To
validate the method for the cutoff modes, the first three modes
in the rectangular waveguide are also calculated when they are
under cutoff and the results are presented in Fig. 4(b) along with
the exact solutions.

The second case is a boxed microstrip line with electric
anisotropic substrate, as shown in Fig. 3(b). The width and the
height of the metallic box are mm and mm,
respectively. The dielectric diagonal constant tensor of the
substrate is given by , and , and its
thickness mm. The width of the strip mm and
the thickness is negligible. The computed result is superposed
with that calculated by FDTD in [4] in Fig. 5 with good
correlation.

The third example is an unilateral fin-line with the geometry
shown in Fig. 3(c), in which mm, mm,

mm, and mm. The relative permittivity of the dielectric
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(a)

(b)

Fig. 4. Dispersion characteristics of a rectangular waveguide. (a) Propagation
constant. (b) Attenuation constant.

Fig. 5. Dispersion characteristics of a boxed microstrip line with anisotropic
substrate.

slab is . The result calculated by the proposed method
and that obtained in [3] are superimposed in Fig. 6.

Finally, a partially inhomogeneous dielectric loaded wave-
guide as shown in Fig. 3(d) is analyzed. The dimensions of the
structure are mm, mm, mm,
and mm. The relative permittivity of the slab is .
The dispersion curves of the first two modes are obtained and

Fig. 6. Dispersion characteristics of a unilateral fin-line.

Fig. 7. Dispersion characteristics of a partially filled inhomogeneous dielectric
loaded waveguide.

TABLE I
COMPARISON OFTHIS METHOD AND SIX-COMPONENTMETHOD

are compared with that of Ansoft-HFSS. As shown in Fig. 7,
excellent agreement can be observed.

It is worthwhile mentioning that the example of inhomoge-
neous dielectric loaded waveguide in [8] is also calculated with
this method. For the sake of briefness, the result is not presented
here. Excellent agreement has been obtained between the result
of this method and that of biorthonormal-basis method, which
falls in a totally different category of numerical method.

Although the elimination of longitudinal components does
not help to reduce the memory requirement due to the number of
terms in remaining equations increases, the CPU time is consid-
erably reduced as compared to the case in which six field com-
ponents are comprised. The comparison of efficiency in calcu-
lating dispersion curves of dominant mode in rectangular wave-
guide [Fig. 3(a)] and boxed microstrip line [Fig. 3(b)] is shown
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in Table I. The calculations are carried out on a Pentium III 800
computer using Matlab 6.0.

IV. CONCLUSION

In this paper, a novel compact 2-D full-wave FDFD method
has been proposed for the analysis of the dispersion charac-
teristics of a general guided wave structure. In the algorithm,
only four transverse field components are employed in the
final resulting eigen equation. Therefore, it is more efficient
than the existing approaches involving six field components.
Furthermore, since the algorithm determinesfor a given
(frequency), it is significantly more attractive and promising in
practical applications than the existing methods that inversely
seek for a given . Additionally, it has been verified that this
method also works very well for the modes under cutoff.
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